source:先導(dǎo)科技集團(tuán)
消息稱,該項目位于高新六路以南、光谷五路以東,建筑面積26萬平方米,共19棟建筑,包括研發(fā)中心、生產(chǎn)調(diào)度中心、辦公大樓等,整個項目力爭2025年年底實現(xiàn)投產(chǎn)運營。未來,半導(dǎo)體襯底、外延材料就將自這4座生產(chǎn)廠房下線,有力補(bǔ)強(qiáng)光谷光通信及激光產(chǎn)業(yè)供應(yīng)鏈。
此次封頂?shù)?棟生產(chǎn)廠房將承擔(dān)核心材料制造,具體來看:
M1廠房?? 砷化鎵襯底生產(chǎn)線(應(yīng)用于5G射頻芯片)
M2廠房?? 磷化銦襯底生產(chǎn)線(光通信激光器核心材料)
M3廠房?? 可調(diào)諧激光器量產(chǎn)線
M4廠房?? 鍺片生產(chǎn)基地(紅外探測器關(guān)鍵材料)
資料顯示,先導(dǎo)科技集團(tuán)有限公司是全球稀散金屬龍頭企業(yè)。2024年3月,該項目落戶光谷,投資120億元建設(shè)高端化合物半導(dǎo)體材料及芯片產(chǎn)業(yè)化基地項目。項目投產(chǎn)后具備砷化鎵襯底、磷化銦襯底、鍺片、可調(diào)諧激光器及其他產(chǎn)品等生產(chǎn)能力。
“這相當(dāng)于在光谷建造了一個‘化合物半導(dǎo)體超市’?!表椖靠偣こ處熇蠲魍嘎?,項目達(dá)產(chǎn)后可年產(chǎn)8英寸襯底材料50萬片,滿足全球15%的高端需求。
化合物半導(dǎo)體呈現(xiàn)多元化態(tài)勢化合物半導(dǎo)體被視為“后摩爾時代”的戰(zhàn)略材料。行業(yè)數(shù)據(jù)顯示,我國砷化鎵襯底進(jìn)口依存度仍高達(dá)83%,磷化銦更是超過90%。
化合物半導(dǎo)體行業(yè)正處于蓬勃發(fā)展與關(guān)鍵變革的重要節(jié)點。從市場規(guī)模來看,隨著5G通信、光通信、汽車電子、消費電子等眾多領(lǐng)域?qū)Ω咝阅馨雽?dǎo)體材料需求的持續(xù)攀升,化合物半導(dǎo)體市場呈現(xiàn)出增長態(tài)勢。業(yè)界預(yù)測,未來幾年全球化合物半導(dǎo)體市場規(guī)模有望保持兩位數(shù)的年增長率,市場前景極為廣闊。
在技術(shù)創(chuàng)新層面,各國科研團(tuán)隊與企業(yè)不斷加大研發(fā)投入,致力于攻克技術(shù)難題。在材料生長工藝上,分子束外延(MBE)和金屬有機(jī)化學(xué)氣相沉積(MOCVD)等先進(jìn)技術(shù)持續(xù)優(yōu)化,能夠生長出更高質(zhì)量、更大尺寸的化合物半導(dǎo)體材料,為后續(xù)芯片制造奠定堅實基礎(chǔ)。在芯片設(shè)計與制造工藝方面,也取得了諸多突破,例如新型器件結(jié)構(gòu)的研發(fā),有效提升了化合物半導(dǎo)體芯片的性能與集成度。
競爭格局呈現(xiàn)多元化態(tài)勢。國際上,歐美日等發(fā)達(dá)國家和地區(qū)的企業(yè)憑借長期積累的技術(shù)、品牌和市場優(yōu)勢,在高端產(chǎn)品領(lǐng)域占據(jù)主導(dǎo)地位。
美國的Wolfspeed在碳化硅(SiC)領(lǐng)域技術(shù)領(lǐng)先,其產(chǎn)品廣泛應(yīng)用于新能源汽車、工業(yè)電源等對功率器件要求嚴(yán)苛的高端領(lǐng)域,為提升系統(tǒng)效率與可靠性發(fā)揮著關(guān)鍵作用。
博通有限公司在砷化鎵(GaAs)等化合物半導(dǎo)體產(chǎn)品方面技術(shù)成熟,產(chǎn)品在5G通信、航空航天等領(lǐng)域有著廣泛應(yīng)用,例如其生產(chǎn)的射頻芯片為眾多通信設(shè)備提供了穩(wěn)定高效的信號處理能力。
同時,韓國的三星、LG等企業(yè)依托自身在半導(dǎo)體領(lǐng)域的深厚積淀與大規(guī)模生產(chǎn)能力,積極布局化合物半導(dǎo)體業(yè)務(wù),在中低端市場通過成本控制與產(chǎn)能優(yōu)勢具備較強(qiáng)競爭力。
隨著中國政策的大力扶持以及企業(yè)自身的努力,近年來取得了顯著進(jìn)展。
source:穩(wěn)懋半導(dǎo)體
穩(wěn)懋半導(dǎo)體等企業(yè)專注于化合物半導(dǎo)體代工領(lǐng)域,憑借豐富的代工經(jīng)驗與較高的生產(chǎn)效率,在全球化合物半導(dǎo)體代工市場占據(jù)重要份額,為全球眾多設(shè)計公司提供生產(chǎn)制造服務(wù)。
而上述提到的先導(dǎo)科技集團(tuán)在光谷投資建設(shè)的120億元化合物半導(dǎo)體基地,更是國內(nèi)行業(yè)發(fā)展的一個重要縮影。
越來越多的國內(nèi)企業(yè)開始涉足化合物半導(dǎo)體領(lǐng)域,在部分領(lǐng)域?qū)崿F(xiàn)了從無到有的突破,逐步縮小與國際先進(jìn)水平的差距。但整體而言,國內(nèi)企業(yè)在技術(shù)研發(fā)實力、高端人才儲備以及產(chǎn)業(yè)生態(tài)完善程度等方面,與國際領(lǐng)先水平仍存在一定差距。
從應(yīng)用領(lǐng)域拓展來看,除了傳統(tǒng)的通信、電子領(lǐng)域,化合物半導(dǎo)體在新能源汽車的功率器件、光伏的高效逆變器、醫(yī)療的高靈敏度探測器等新興領(lǐng)域的應(yīng)用也日益廣泛。業(yè)界表示,可預(yù)見的是,隨著技術(shù)的不斷成熟和成本的逐步降低,化合物半導(dǎo)體將在更多領(lǐng)域大放異彩,成為推動全球科技產(chǎn)業(yè)發(fā)展的重要力量。(集邦化合物半導(dǎo)體南清整理)
更多SiC和GaN的市場資訊,請關(guān)注微信公眾賬號:集邦化合物半導(dǎo)體。
]]>一是推動產(chǎn)業(yè)集聚。圍繞格恩半導(dǎo)體上下游開展產(chǎn)業(yè)鏈“延強(qiáng)補(bǔ)”,積極引進(jìn)上游氮化鎵襯底、原輔料,下游高性能器件封裝及激光、LED照明等終端應(yīng)用企業(yè),打造氮化鎵半導(dǎo)體未來產(chǎn)業(yè)先導(dǎo)區(qū)。目前氮化鎵激光產(chǎn)業(yè)基地陸續(xù)招引、洽談項目14個,總投資61.99億元。
圖片來源:拍信網(wǎng)正版圖庫
二是促進(jìn)產(chǎn)業(yè)配套。開展專項產(chǎn)業(yè)對接2次,深化格恩半導(dǎo)體與銅陵鎵特、全色光顯、合肥芯碁微電子等省內(nèi)產(chǎn)業(yè)鏈企業(yè)合作。梳理全市115家電子信息企業(yè)產(chǎn)品應(yīng)用領(lǐng)域,聚焦光電器件、半導(dǎo)體芯片等領(lǐng)域推進(jìn)本地配套,推動葉集欣奕華半導(dǎo)體電子材料生產(chǎn)基地項目與格恩半導(dǎo)體圍繞光刻膠產(chǎn)品洽談配套合作。
三是優(yōu)化要素保障。推動政策傾斜。在制造業(yè)融資財政貼息、國家級小巨人、省級專精特新和數(shù)字化轉(zhuǎn)型示范項目領(lǐng)域重點向氮化鎵激光產(chǎn)業(yè)基地傾斜。打造科研平臺。成功建成格恩半導(dǎo)體省級博士后科研工作站,正在建設(shè)省工程研究中心、產(chǎn)業(yè)創(chuàng)新中心、制造業(yè)創(chuàng)新中心和企業(yè)技術(shù)中心等重點創(chuàng)新型平臺。開展融資支持。市產(chǎn)投子基金一期已投入3000萬元支持龍頭企業(yè)格恩半導(dǎo)體發(fā)展,目前正申請省級新材料產(chǎn)業(yè)主題母基金出資設(shè)立六安子基金,重點圍繞氮化鎵激光產(chǎn)業(yè)基地開展投資。(來源:六安市工信局)
更多SiC和GaN的市場資訊,請關(guān)注微信公眾賬號:集邦化合物半導(dǎo)體。
]]>根據(jù)協(xié)議,雙方將投資建設(shè)半導(dǎo)體激光雷達(dá)及傳感器件產(chǎn)業(yè)化項目,引進(jìn)激光雷達(dá)、半導(dǎo)體激光器、光收發(fā)器件等自動化生產(chǎn)、檢測及輔助系統(tǒng)等設(shè)備,主要產(chǎn)品為激光雷達(dá)及傳感器件,項目預(yù)計今年6月底開工建設(shè),建設(shè)期18個月。
據(jù)悉,激光雷達(dá)及傳感器件主要應(yīng)用于以高級輔助駕駛(ADAS)、車聯(lián)網(wǎng)為主的車用以及機(jī)器人等領(lǐng)域,在自動駕駛、智能巡檢、消防偵查、智慧農(nóng)業(yè)等行業(yè)應(yīng)用前景廣闊,隨著人工智能、5G技術(shù)的逐漸普及,未來激光雷達(dá)和傳感器行業(yè)將呈現(xiàn)技術(shù)、市場規(guī)模持續(xù)增長的趨勢。
砷化鎵作為第二代半導(dǎo)體材料在光電領(lǐng)域中具有至關(guān)重要的作用,并且砷化鎵材料可以制造出高效的激光發(fā)射器。由于其電子遷移率高,砷化鎵激光器能夠產(chǎn)生高頻、高速的激光脈沖。
先導(dǎo)科技集團(tuán)是全球最大稀散金屬生產(chǎn)企業(yè),在半導(dǎo)體襯底領(lǐng)域,公司砷化鎵襯底材料出貨量全球第一。此外,先到科技還可生產(chǎn)磷化銦襯底和鍺襯底。
廣東先導(dǎo)稀材股份有限公司(source:清遠(yuǎn)高新區(qū)管委會)
依托材料優(yōu)勢,近年來開始布局傳感芯片、光電器件等產(chǎn)品研發(fā)制造,以垂直整合模式有效降低產(chǎn)品成本,形成競爭優(yōu)勢,實現(xiàn)我國高端精密激光雷達(dá)核心部件自主可控。
消息指出,激光雷達(dá)及傳感器件產(chǎn)業(yè)化項目建成后,不僅為現(xiàn)有英望手機(jī)、恒芯電子等企業(yè)提供配套服務(wù),還將助力德州形成從材料、外延、芯片制造、封裝測試、器件模組到終端應(yīng)用更加完善的產(chǎn)業(yè)生態(tài),彌補(bǔ)了天衢新區(qū)第二代半導(dǎo)體、特別是制造環(huán)節(jié)的空白。(集幫化合物半導(dǎo)體Morty整理)
更多SiC和GaN的市場資訊,請關(guān)注微信公眾賬號:集邦化合物半導(dǎo)體。
]]>光子集成電路,將一系列光電功能組合在一塊芯片上,在日常生活中越來越常見。它們被用于連接數(shù)據(jù)中心服務(wù)器機(jī)架的高速光收發(fā)器,包括用于傳輸IEEE Spectrum網(wǎng)站的高速光收發(fā)器,用于保持自動駕駛汽車在軌道上的激光雷達(dá),用于發(fā)現(xiàn)大氣中的化學(xué)物質(zhì)的光譜儀,以及許多其他應(yīng)用。所有這些系統(tǒng)都變得越來越便宜,在某些情況下,通過使用硅制造技術(shù)制造大部分集成電路,在經(jīng)濟(jì)上已經(jīng)變得可行。
工程師們已經(jīng)能夠在硅光子芯片上集成幾乎所有重要的光學(xué)功能,包括調(diào)制和檢測的基本功能,除了一項:發(fā)光。硅本身不能有效地做到這一點,所以由所謂的III-V材料制成的半導(dǎo)體,以其成分在周期表上的位置命名,通常用于制造單獨封裝的組件來發(fā)光。
如果你可以在你的設(shè)計中使用外部激光二極管,那就沒有問題。但最近有幾個因素促使工程師們將激光與硅光子學(xué)集成起來。例如,可能沒有空間放置單獨的光源。植入體內(nèi)用于監(jiān)測血糖水平的微型設(shè)備可能會面臨這個問題?;蛘邞?yīng)用程序的成本可能需要更緊密的集成:當(dāng)你可以在一塊硅片上安裝數(shù)百或數(shù)千個激光器時,你最終將獲得比需要連接單獨芯片更低的成本和更高的可靠性。
有很多方法可以實現(xiàn)激光和硅的這種更緊密的集成。在位于比利時的納米電子研發(fā)中心 Imec 工作,我們目前正在推行四種基本策略:倒裝芯片加工、微轉(zhuǎn)移印刷、晶圓鍵合和單片集成。以下是關(guān)于這些方法如何工作、它們的可擴(kuò)展性和成熟度水平以及它們的優(yōu)缺點的指南。
在倒裝芯片鍵合中,激光芯片 [左] 被單獨轉(zhuǎn)移并鍵合到硅光子晶圓上。
倒裝芯片集成
將激光器直接集成到硅晶圓上的一種直接方法是芯片封裝技術(shù),稱為倒裝芯片工藝,顧名思義。
芯片的電氣連接在頂部,最上層的互連終止于金屬焊盤。倒裝芯片技術(shù)依賴于連接到這些焊盤上的焊球。然后將芯片翻轉(zhuǎn)過來,使焊料與芯片封裝上的相應(yīng)焊盤對齊(或者在我們的例子中是另一個芯片上)。然后焊料熔化,將芯片粘合到封裝上。
當(dāng)試圖將激光芯片鍵合到硅光子芯片時,這個概念是相似的,但更為嚴(yán)格。邊緣發(fā)射激光器在晶圓上進(jìn)行全面加工,切割成單獨的芯片,并由供應(yīng)商進(jìn)行測試。然后使用高精度版本的倒裝芯片工藝將單個激光芯片鍵合到目標(biāo)硅光子晶圓上,一次一個激光芯片。困難的部分是確保邊緣發(fā)射的激光輸出與硅光子芯片的輸入對齊。我們使用稱為對接耦合的工藝,其中激光器放置在硅的凹陷部分,因此它橫向鄰接硅光子波導(dǎo)的蝕刻面。
為此,倒裝芯片工藝需要在所有三個維度上都達(dá)到亞微米級的對準(zhǔn)精度。在過去的幾年里,已經(jīng)開發(fā)出專門的倒裝芯片焊接工具來完成這項工作,我們和我們的合作者和開發(fā)伙伴已經(jīng)使用它們來優(yōu)化組裝過程。利用使用機(jī)器視覺來保持精確對準(zhǔn)的先進(jìn)拾取和放置工具,我們可以在短短幾十秒內(nèi)放置和鍵合精度優(yōu)于 500 納米的激光設(shè)備。
2021 年,我們還建立了晶圓級硅光子工藝,以提高這一性能。它將機(jī)械對準(zhǔn)基座和更精確蝕刻的對接耦合接口添加到硅芯片上,以實現(xiàn)優(yōu)于幾百納米的垂直對準(zhǔn)。使用這些技術(shù),我們在 300 毫米硅光子晶圓上組裝了某些激光設(shè)備。我們很高興地看到,來自每個設(shè)備的 50 毫瓦激光中有多達(dá) 80% 被耦合到與其相連的硅光子芯片中。在最壞的情況下,整個晶圓上的耦合度仍然在 60% 左右。這些結(jié)果可與主動對準(zhǔn)實現(xiàn)的耦合效率相媲美,主動對準(zhǔn)是一個更耗時的過程,其中來自激光器本身的光用于引導(dǎo)對準(zhǔn)過程。
倒裝芯片方法的一個顯著優(yōu)勢是配對芯片類型的簡單性和靈活性。因為它們可以在現(xiàn)有的生產(chǎn)線上生產(chǎn),附加工程有限,所以它們每個都可以從多個制造商處采購。而且,隨著市場需求的增加,越來越多的供應(yīng)商提供倒裝芯片組裝服務(wù)。另一方面,該過程的順序性質(zhì)——每個激光芯片都需要單獨拾取和放置——是一個重大缺陷。從長遠(yuǎn)來看,它限制了制造吞吐量和大幅降低成本的潛力。這對于成本敏感的應(yīng)用(如消費產(chǎn)品)以及每個芯片需要多個激光設(shè)備的系統(tǒng)尤為重要。
使用倒裝芯片方法的高精度版本將激光芯片連接到硅光子芯片上。
微轉(zhuǎn)印
微轉(zhuǎn)移印刷消除了對接耦合的一些對齊困難,同時還加快了組裝過程。與倒裝芯片工藝一樣,發(fā)光器件生長在 III-V 族半導(dǎo)體基板上。但有一個很大的不同:III-V 晶圓沒有被切割成單獨的芯片。相反,晶圓上的激光器被底切,因此它們僅通過小系繩連接到源晶圓。然后用類似墨水印章的工具將這些設(shè)備一起撿起來,打破系繩。然后,印模將激光器與硅光子晶圓上的波導(dǎo)結(jié)構(gòu)對齊,并將它們粘合在那里。
倒裝芯片技術(shù)使用金屬焊料凸點,而微轉(zhuǎn)移印刷使用粘合劑,甚至可以僅靠分子鍵合,這依賴于兩個平面之間的范德華力,將激光固定到位。此外,硅光子芯片中光源和波導(dǎo)之間的光學(xué)耦合通過不同的過程發(fā)生。該過程稱為漸逝耦合,將激光器放置在硅波導(dǎo)結(jié)構(gòu)的頂部,然后光“滲入”其中。雖然以這種方式傳輸?shù)墓β瘦^少,但漸逝耦合比對接耦合要求的對準(zhǔn)精度低。
具有更大的對齊容差使該技術(shù)能夠一次傳輸數(shù)千個設(shè)備。因此,原則上它應(yīng)該允許比倒裝芯片處理更高的吞吐量,并且是要求在每單位面積上集成大量 III-V 族組件的應(yīng)用的理想選擇。
盡管轉(zhuǎn)印是制造 microLED 顯示器的既定工藝,例如許多增強(qiáng)現(xiàn)實和虛擬現(xiàn)實產(chǎn)品所需的顯示器,但尚未準(zhǔn)備好打印激光或光學(xué)放大器。但我們到了那里。
去年,Imec 成功地使用轉(zhuǎn)移印刷將此類光源連接到包含硅光子波導(dǎo)、高速光調(diào)制器和光電探測器的晶圓上。我們還印刷了可調(diào)諧超過 45 nm 波長的紅外激光器和適用于基于芯片的光譜系統(tǒng)的高脈沖能量設(shè)備。這些只是為了演示目的而制作的,但我們沒有看到這種方法無法以高產(chǎn)量取得良好結(jié)果的根本原因。因此,我們預(yù)計該技術(shù)將在幾年內(nèi)準(zhǔn)備好部署到生產(chǎn)線上。
在微轉(zhuǎn)移印刷中,激光芯片 [紅色矩形,左] 在其自己的晶圓上固定到位。郵票 [淺灰色] 一次拾取多個激光器并將它們放置在硅光子晶圓上。
晶圓鍵合
將發(fā)光元件與其硅光子學(xué)伙伴精確對齊是我們討論的兩種技術(shù)的關(guān)鍵步驟。但是有一種技術(shù),一種稱為 III-V 族硅晶圓鍵合的技術(shù),找到了解決方法。該方案不是將已構(gòu)建的激光器(或其他發(fā)光組件)轉(zhuǎn)移到經(jīng)過處理的硅晶片,而是將 III-V 族半導(dǎo)體的空白芯片(甚至小晶片)粘合到該硅晶片。然后,您可以在已有相應(yīng)硅波導(dǎo)的地方構(gòu)建所需的激光設(shè)備。
在轉(zhuǎn)移的材料中,我們只對結(jié)晶 III-V 材料的薄層感興趣,稱為外延層。因此,在與硅晶圓鍵合后,其余材料將被去除??梢允褂脴?biāo)準(zhǔn)光刻和晶圓級工藝在與底層硅波導(dǎo)對齊的外延層中制造激光二極管。然后蝕刻掉任何不需要的 III-V 材料。
英特爾 的工程師在過去十年中開發(fā)了這種方法,并于 2016 年推出了第一個用它構(gòu)建的商業(yè)產(chǎn)品——光收發(fā)器。這種方法允許高吞吐量集成,因為它可以同時并行處理許多設(shè)備。與轉(zhuǎn)印一樣,它在 III-V 族和硅材料之間使用漸逝耦合,從而產(chǎn)生高效的光學(xué)界面。
III-V 族與硅晶圓鍵合的一個缺點是您需要大量投資來建立一條生產(chǎn)線,該生產(chǎn)線可以使用用于制造 200 毫米或 300 毫米的硅晶圓的工具來處理 III-V 族工藝步驟毫米直徑。這種工具與激光二極管鑄造廠中使用的工具非常不同,后者的典型晶圓直徑要小得多。
圖片在芯片到晶圓鍵合中,III-V 族半導(dǎo)體 [粉紅色] 的空白片被鍵合到已經(jīng)處理過的硅光子晶圓上。III-V 族材料在硅波導(dǎo)上方加工成激光器。然后蝕刻掉其余的 III-V 材料。
單片集成
將所涉及的兩種不同材料結(jié)合起來的理想方法是直接在硅上生長 III-V 族半導(dǎo)體,這種方法稱為單片集成。這將消除任何粘合或?qū)R的需要,并且將減少浪費的 III-V 材料的數(shù)量。但要使這種策略切實可行,必須克服許多技術(shù)障礙。因此,Imec 和其他地方繼續(xù)朝著這個目標(biāo)進(jìn)行研究。
該研究的主要目的是創(chuàng)造具有低缺陷密度的結(jié)晶 III-V 材料。根本問題在于,硅中原子的晶格間距與感興趣的 III-V 族半導(dǎo)體中原子的晶格間距之間存在相當(dāng)大的不匹配——超過 4%。
由于這種晶格失配,在硅上生長的每個 III-V 層都會產(chǎn)生應(yīng)變。僅添加幾納米的 III-V 薄膜后,晶體中就會出現(xiàn)缺陷,從而釋放累積的應(yīng)變。這些“失配”缺陷沿著穿透整個 III-V 層的線形成。這些缺陷包括開路晶體鍵線和局部晶體畸變,這兩者都會嚴(yán)重降低光電器件的性能。
為防止這些缺陷破壞激光器,必須將它們限制在遠(yuǎn)離設(shè)備的地方。這樣做通常涉及鋪設(shè)一層幾微米厚的 III-V 材料,在下面的失配缺陷和上面的無應(yīng)變區(qū)域之間形成一個巨大的緩沖區(qū),激光設(shè)備可以在那里制造。加利福尼亞大學(xué)圣塔芭芭拉分校的研究人員報告了使用這種方法取得的出色進(jìn)展,展示了具有可靠壽命的高效砷化鎵基量子點激光器。
然而,這些實驗只是在小規(guī)模上進(jìn)行的。將該技術(shù)擴(kuò)展到工業(yè)中使用的 200 或 300 毫米晶圓將很困難。添加厚緩沖層可能會導(dǎo)致各種機(jī)械問題,例如 III-V 薄膜內(nèi)部出現(xiàn)裂紋或晶圓彎曲。此外,由于有源器件位于如此厚的緩沖層之上,因此很難將光耦合到硅基板中的下方波導(dǎo)。
為了規(guī)避這些挑戰(zhàn),Imec 引入了一種稱為納米脊工程或 NRE 的單片集成新方法。該技術(shù)旨在迫使缺陷在如此有限的空間中形成,以便可以在與底層硅的界面上方略高于 100 nm 處構(gòu)建工作設(shè)備。
NRE 使用一種稱為縱橫比陷印的現(xiàn)象將缺陷限制在小區(qū)域。它首先在二氧化硅絕緣體層內(nèi)形成又窄又深的溝槽。在溝槽底部,也就是絕緣體與硅接觸的地方,一條凹槽切入硅中,使空隙的橫截面呈箭頭形。然后在溝槽內(nèi)生長一層薄薄的 III-V 族晶體,應(yīng)變引起的失配缺陷被有效地捕獲在溝槽側(cè)壁,防止這些缺陷線穿透得更遠(yuǎn)。填充溝槽后,繼續(xù)生長以在溝槽上方形成更大的 III-V 族材料納米脊。該納米級脊中的材料完全沒有缺陷,因此可用于激光設(shè)備。
大多數(shù)關(guān)于單片集成的研究都是在改進(jìn)單個設(shè)備和確定其故障原因的層面上進(jìn)行的。但 Imec 已經(jīng)在展示與該技術(shù)的完整晶圓級集成方面取得了實質(zhì)性進(jìn)展,在 300 毫米硅試產(chǎn)線上生產(chǎn)了高質(zhì)量的基于 GaAs 的光電二極管。下一個里程碑將是基于與光電二極管類似設(shè)計的電泵浦激光器的演示。Nanoridge 工程仍在實驗室中進(jìn)行開發(fā),但如果成功,無疑將對這個行業(yè)產(chǎn)生巨大影響。
Nanoridge engineering 在硅中特殊形狀的溝槽中生長適用于激光的半導(dǎo)體。溝槽的形狀將缺陷 [插圖] 置于激光器構(gòu)造區(qū)域的下方。
硅激光器的前景
在接下來的幾年里,這里討論的每一種方法都肯定會取得進(jìn)一步進(jìn)展。我們預(yù)計它們最終將共存以滿足不同的應(yīng)用程序需求和用例。
相對適中的安裝成本和倒裝芯片激光器組件的準(zhǔn)備就緒將使近期產(chǎn)品成為可能,并且對于每個光子 IC 只需要一個或幾個激光器的應(yīng)用特別有吸引力,例如數(shù)據(jù)中心使用的光收發(fā)器。此外,這種方法固有的靈活性使其對需要非標(biāo)準(zhǔn)激光波長或不常見的光子技術(shù)的應(yīng)用具有吸引力。
對于每個光子 IC 需要多個激光器或放大器的大批量應(yīng)用,轉(zhuǎn)移印刷和芯片到晶圓鍵合提供更高的制造吞吐量、更小的耦合損耗,并有可能進(jìn)一步降低成本。因為這里的設(shè)置成本要高得多,所以適合這些技術(shù)的應(yīng)用程序必須有很大的市場。
最后,硅上的直接 III-V 族外延,例如 NRE 技術(shù),代表了激光集成的最高水平。但我們和其他研究人員必須在材料質(zhì)量和晶圓級集成方面取得進(jìn)一步進(jìn)展,才能釋放其潛力。(文:半導(dǎo)體行業(yè)觀察編譯自spectrum)
更多SiC和GaN的市場資訊,請關(guān)注微信公眾賬號:集邦化合物半導(dǎo)體。
]]>